|
This article is cited in 1 scientific paper (total in 1 paper)
Logarithmic expansion, entropy, and dimension for set-valued maps
D. Carrasco-Oliveraa, R. Metzgerb, C. Moralesc a Universidad del Bío-Bío
b Universidad Nacional de Ingenieria, Lima, Peru
c Universidade do Estado do Rio de Janeiro
Abstract:
We obtain a lower bound for the entropy of a (not necessarily invariant) Borel probability measure with respect to an upper semicontinuous set-valued map as the product of the lower dimension of the measure and the logarithmic expansion rate. This is a generalization of the well-known measure-preserving single-valued case.
Keywords:
logarithm expansion, metric entropy, dimension.
Citation:
D. Carrasco-Olivera, R. Metzger, C. Morales, “Logarithmic expansion, entropy, and dimension for set-valued maps”, Optimal control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 178, VINITI, Moscow, 2020, 31–40
Linking options:
https://www.mathnet.ru/eng/into610 https://www.mathnet.ru/eng/into/v178/p31
|
Statistics & downloads: |
Abstract page: | 207 | Full-text PDF : | 85 | References: | 31 |
|