Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 177, Pages 97–101
DOI: https://doi.org/10.36535/0233-6723-2020-177-97-101
(Mi into603)
 

The lattice of fully invariant subgroups of a cotorsion hull

T. G. Kemoklidze

Akaki Tsereteli State University, Kutaisi
References:
Abstract: We consider lattices of fully invariant subgroups of cotorsion hulls for various classes of separable primary abelian groups. Based on the results of A. Mader, A. I. Moskalenko, A. L. S. Corner, and R. S. Pierce, we examine these lattices in situations where the primary group is the direct sum of cyclic $p$-groups, the direct sum of torsion-complete groups, or an additive group of the primary group of ring endomorphisms is the direct sum of a group of small endomorphisms and a $p$-adic completion of the direct sum of infinite cyclic groups. The questions concerning the full transitivity of a cotorsion hull are discussed.
Keywords: separable $p$-group, cotorsion hull, full transitivity, lattice of fully invariant subgroups.
Document Type: Article
UDC: 512.542, 512.544, 512.546.37
MSC: 20E07, 20F22
Language: Russian
Citation: T. G. Kemoklidze, “The lattice of fully invariant subgroups of a cotorsion hull”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 177, VINITI, Moscow, 2020, 97–101
Citation in format AMSBIB
\Bibitem{Kem20}
\by T.~G.~Kemoklidze
\paper The lattice of fully invariant subgroups of a cotorsion hull
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 177
\pages 97--101
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into603}
\crossref{https://doi.org/10.36535/0233-6723-2020-177-97-101}
Linking options:
  • https://www.mathnet.ru/eng/into603
  • https://www.mathnet.ru/eng/into/v177/p97
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :39
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024