Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 177, Pages 87–96
DOI: https://doi.org/10.36535/0233-6723-2020-177-87-96
(Mi into602)
 

$A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space

T. V. Kadeishviliab

a A. Razmadze Mathematical Institute, Georgian Academy of Sciences
b Tbilisi Ivane Javakhishvili State University
References:
Abstract: The cohomology algebra of the space $H^*(X)$ defines neither cohomology modules of the loop space $H^*(\Omega X)$ nor cohomologies of the free loop space $H^*(\Lambda X)$. But by the author's minimality theorem, there exists a structure of $A(\infty)$-algebra $(H^*(X),\{m_i\})$ on $H^*(X)$, which determines $H^*(\Omega X)$. We also show that the same $A(\infty)$-algebra $(H^*(X),\{m_i\})$ determines also cohomology modules $H^*(\Lambda X)$.
Keywords: Hochschild homology, morphism, $A(\infty)$-algebra, cohomology algebra, cohomology module, loop space.
Document Type: Article
UDC: 512.665.43, 515.145.5
MSC: 19D55, 55P35
Language: Russian
Citation: T. V. Kadeishvili, “$A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 177, VINITI, Moscow, 2020, 87–96
Citation in format AMSBIB
\Bibitem{Kad20}
\by T.~V.~Kadeishvili
\paper $A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 177
\pages 87--96
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into602}
\crossref{https://doi.org/10.36535/0233-6723-2020-177-87-96}
Linking options:
  • https://www.mathnet.ru/eng/into602
  • https://www.mathnet.ru/eng/into/v177/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :80
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024