Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 177, Pages 69–73
DOI: https://doi.org/10.36535/0233-6723-2020-177-69-73
(Mi into599)
 

Irreducible generating sets of complete semigroups of unions $B_X(S)$ defined by semilattices of the class $\Sigma_1(X,4)$

O. Givradze

Batumi Shota Rustaveli State University
References:
Abstract: In complete semigroups of unions $B_X(D)$ defined by semilattices of the class $\Sigma_1(X,4)$, we describe the set of all external elements and show that it is a generating (and, therefore, irreducible) set of the semigroup $B_X(D)$. For a finite semigroup $B_X(D)$, we give a formula for calculating the number of elements of the generating set.
Keywords: semilattice of unions, complete semigroup of binary relations, generating set, quasinormal representation of binary relations.
Document Type: Article
UDC: 512.532, 512.534.1, 512.562
MSC: 20M05, 20M10
Language: Russian
Citation: O. Givradze, “Irreducible generating sets of complete semigroups of unions $B_X(S)$ defined by semilattices of the class $\Sigma_1(X,4)$”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 177, VINITI, Moscow, 2020, 69–73
Citation in format AMSBIB
\Bibitem{Giv20}
\by O.~Givradze
\paper Irreducible generating sets of complete semigroups of unions $B_X(S)$ defined by semilattices of the class $\Sigma_1(X,4)$
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 177
\pages 69--73
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into599}
\crossref{https://doi.org/10.36535/0233-6723-2020-177-69-73}
Linking options:
  • https://www.mathnet.ru/eng/into599
  • https://www.mathnet.ru/eng/into/v177/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :38
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024