Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 177, Pages 24–33
DOI: https://doi.org/10.36535/0233-6723-2020-177-24-33
(Mi into595)
 

On the number of Heisenberg characters of finite groups

A. Zolfi, A. R. Ashrafi

University of Kashan
References:
Abstract: An irreducible character $\chi$ of a finite group $G$ is called a Heisenberg character if $\ker \chi \supseteq [G, [G, G]]$. In this paper, we prove that the group $G$ has exactly $r$, $r \leq 3$, Heisenberg characters if and only if $|{G}/{G'}|=r$. If $G$ has exactly four Heisenberg characters, then $|{G}/{G'}|=4$, but the converse is not correct in general. Finally, it is proved that if $G$ has exactly five Heisenberg characters, then $|{G}/{G'}|=5$ or $|{G}/{G'}|=4$ and one of the Heisenberg characters of $G$ has the degree $2$.
Keywords: irreducible character, Heisenberg character, finite group.
Funding agency Grant number
University of Kashan 572760/2
This work was partially supported by the grant of the University of Kashan (project No. 572760/2).
Document Type: Article
UDC: 512.54
MSC: 20C20, 20E34
Language: Russian
Citation: A. Zolfi, A. R. Ashrafi, “On the number of Heisenberg characters of finite groups”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 177, VINITI, Moscow, 2020, 24–33
Citation in format AMSBIB
\Bibitem{ZolAsh20}
\by A.~Zolfi, A.~R.~Ashrafi
\paper On the number of Heisenberg characters of finite groups
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 177
\pages 24--33
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into595}
\crossref{https://doi.org/10.36535/0233-6723-2020-177-24-33}
Linking options:
  • https://www.mathnet.ru/eng/into595
  • https://www.mathnet.ru/eng/into/v177/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :39
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024