Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 177, Pages 3–9
DOI: https://doi.org/10.36535/0233-6723-2020-177-3-9
(Mi into593)
 

On nilpotent power $MR$-groups

M. G. Amaglobelia, T. Bokelavadzeb

a Tbilisi Ivane Javakhishvili State University
b Akaki Tsereteli State University, Kutaisi
References:
Abstract: The notion of a power $MR$-group, where $R$ is an arbitrary associative ring with unity, was introduced by R. Lyndon. A. G. Myasnikov and V. N. Remeslennikov gave a more precise definition of an $R$-group by introducing an additional axiom. In particular, the new notion of a power $MR$-group is a direct generalization of the notion of an $R$-module to the case of noncommutative groups. In the present paper, central series and series of commutants in $MR$-groups are introduced. Three variants of the definition of nilpotent power $MR$-groups of step $n$ are discussed. It is proved that, for $n=1,2$, all these definitions are equivalent. The question on the coincidence of these notions for $n>2$ remains open. Moreover, it is proved that the tensor completion of a 2-step nilpotent $MR$-group is 2-step nilpotent.
Keywords: Lyndon $R$-group, Hall $R$-group, $MR$-group, $\alpha$-commutator, tensor completion, nilpotent $MR$-group.
Document Type: Article
UDC: 512.54
MSC: 20F10, 20J15, 20E06
Language: Russian
Citation: M. G. Amaglobeli, T. Bokelavadze, “On nilpotent power $MR$-groups”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 177, VINITI, Moscow, 2020, 3–9
Citation in format AMSBIB
\Bibitem{AmaBok20}
\by M.~G.~Amaglobeli, T.~Bokelavadze
\paper On nilpotent power $MR$-groups
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 177
\pages 3--9
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into593}
\crossref{https://doi.org/10.36535/0233-6723-2020-177-3-9}
Linking options:
  • https://www.mathnet.ru/eng/into593
  • https://www.mathnet.ru/eng/into/v177/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:235
    Full-text PDF :68
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024