Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 176, Pages 121–128
DOI: https://doi.org/10.36535/0233-6723-2020-176-121-128
(Mi into592)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part

O. Kh. Abdullaev

Romanovskii Mathematical Institute, Academy of Sciences of UzSSR
Full-text PDF (193 kB) Citations (1)
References:
Abstract: The existence and uniqueness theorems of the solution to the boundary-value problem for a parabolic-hyperbolic fractional-order equation with the gluing condition are proved.
Keywords: fractional derivative, loaded equation, differential equation, integral equation.
Bibliographic databases:
Document Type: Article
UDC: 517.96
MSC: 34K37
Language: Russian
Citation: O. Kh. Abdullaev, “On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part”, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 176, VINITI, Moscow, 2020, 121–128
Citation in format AMSBIB
\Bibitem{Abd20}
\by O.~Kh.~Abdullaev
\paper On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part
\inbook Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018»,
November 23-28, 2018, Kazan. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 176
\pages 121--128
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into592}
\crossref{https://doi.org/10.36535/0233-6723-2020-176-121-128}
\elib{https://elibrary.ru/item.asp?id=42904384}
Linking options:
  • https://www.mathnet.ru/eng/into592
  • https://www.mathnet.ru/eng/into/v176/p121
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :69
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024