|
Analogs of the Pólya–Szegő and Macai inequalities for the Euclidean moment of inertia of a convex domain
L. I. Gafiyatullina Kazan (Volga Region) Federal University
Abstract:
In this paper, we obtain two-sided estimates for the Euclidean moment of inertia $\mathrm{I}_{2}(G) $ of a convex domain $G$ on the plane in terms of geometric characteristics of this domain similar to the Pólya–Szegő and Makai inequalities for the torsional rigidity.
Keywords:
torsional rigidity, Euclidean moment of a domian relative to the boundary, isoperimetric inequality, distance function, boundary of a domain, convex domain.
Citation:
L. I. Gafiyatullina, “Analogs of the Pólya–Szegő and Macai inequalities for the Euclidean moment of inertia of a convex domain”, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018»,
November 23-28, 2018, Kazan. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 176, VINITI, Moscow, 2020, 70–79
Linking options:
https://www.mathnet.ru/eng/into588 https://www.mathnet.ru/eng/into/v176/p70
|
Statistics & downloads: |
Abstract page: | 217 | Full-text PDF : | 87 | References: | 24 |
|