Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 176, Pages 61–69
DOI: https://doi.org/10.36535/0233-6723-2020-176-61-69
(Mi into587)
 

Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition

A. A. Petrova

Voronezh State University
References:
Abstract: We search for an approximate solution of an abstract linear parabolic equation in a Hilbert space with a nonlocal weighted integral condition by the projection-difference method and the implicit Euler method in time. The approximation of the problem with respect to spatial variables is oriented to the finite element method in the case of arbitrary projection subspaces under an additional smoothness condition. Estimates of errors of approximate solutions are established, the convergence of approximate solutions to the exact solution is proved, and the convergence rate is estimated.
Keywords: Hilbert space, parabolic equation, nonlocal weighted integral condition, projection-difference method, implicit Euler method.
Bibliographic databases:
Document Type: Article
UDC: 517.988.8
MSC: 35K90
Language: Russian
Citation: A. A. Petrova, “Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition”, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 176, VINITI, Moscow, 2020, 61–69
Citation in format AMSBIB
\Bibitem{Pet20}
\by A.~A.~Petrova
\paper Convergence of the projection-difference method for the approximate solution of a smoothly solvable parabolic equation with a weighted integral condition
\inbook Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018»,
November 23-28, 2018, Kazan. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 176
\pages 61--69
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into587}
\crossref{https://doi.org/10.36535/0233-6723-2020-176-61-69}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4150682}
Linking options:
  • https://www.mathnet.ru/eng/into587
  • https://www.mathnet.ru/eng/into/v176/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :57
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024