Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 175, Pages 118–123
DOI: https://doi.org/10.36535/0233-6723-2020-175-118-123
(Mi into581)
 

Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution

A. S. Bondarev

Voronezh State University
References:
Abstract: We construct an approximate solution of an abstract linear parabolic equation in a separable Hilbert space with a periodic condition for a solution by the projection-difference method. We use the Galerkin method for the spatial variables and the implicit Euler discretization for time. We obtain root mean square estimates of the error of approximate solutions that are effective both in time and spatial variables; these estimates imply the convergence of approximate solutions to an exact solution and allow one to find the convergence rate.
Keywords: Hilbert space, parabolic equation, periodic condition, projection-difference method, root mean square error estimate.
Document Type: Article
UDC: 517.988.8
MSC: 65J08, 65M60
Language: Russian
Citation: A. S. Bondarev, “Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution”, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 175, VINITI, Moscow, 2020, 118–123
Citation in format AMSBIB
\Bibitem{Bon20}
\by A.~S.~Bondarev
\paper Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution
\inbook Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018»,
November 23-28, 2018, Kazan. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 175
\pages 118--123
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into581}
\crossref{https://doi.org/10.36535/0233-6723-2020-175-118-123}
Linking options:
  • https://www.mathnet.ru/eng/into581
  • https://www.mathnet.ru/eng/into/v175/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :54
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024