Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 175, Pages 79–104
DOI: https://doi.org/10.36535/0233-6723-2020-175-79-104
(Mi into579)
 

Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space

M. M. Kokurin

Mari State University, Ioshkar-Ola
References:
Abstract: In this paper, we construct and examine the time-discretization scheme for the Cauchy problem for a linear homogeneous differential equation with the Caputo fractional derivative of order $\alpha \in (0,1)$ in time and containing the sectorial operator in a Banach space in the spatial part. The convergence of the scheme is established and error estimates are obtained in terms of the step of discretization. Properties of the Mittag-Leffler function, hypergeometric functions, and the calculus of sectorial operators in Banach spaces are used. Results of numerical experiments that confirm theoretical conclusions are presented.
Keywords: Cauchy problem, Caputo derivative, Banach space, finite-difference scheme, error estimate, Mittag-Leffler function, hypergeometric function, sectorial operator.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.5420.2017/8.9
ÑÏ-5252.2018.5
This work was supported by the Ministry of Education and Science of the Russian Federation (project No. 1.5420.2017/8.9 whithin the framework of the state assignment) and a Grant of the President of the Russian Federation to young scientists and graduate students (project No. SP-5252.2018.5).
Document Type: Article
UDC: 517.983.5
MSC: 47N40, 65J08, 35R11
Language: Russian
Citation: M. M. Kokurin, “Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space”, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 175, VINITI, Moscow, 2020, 79–104
Citation in format AMSBIB
\Bibitem{Kok20}
\by M.~M.~Kokurin
\paper Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space
\inbook Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018»,
November 23-28, 2018, Kazan. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 175
\pages 79--104
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into579}
\crossref{https://doi.org/10.36535/0233-6723-2020-175-79-104}
Linking options:
  • https://www.mathnet.ru/eng/into579
  • https://www.mathnet.ru/eng/into/v175/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :117
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024