Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 175, Pages 69–78
DOI: https://doi.org/10.36535/0233-6723-2020-175-69-78
(Mi into578)
 

Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions

Yu. R. Agachev, M. Yu. Pershagin

Kazan (Volga Region) Federal University
References:
Abstract: The this paper, we introduce a pair of Sobolev spaces with special Jacobi–Gegenbauer weights, in which the general boundary-value problem for a class of ordinary integro-differential equations characterized by the positivity of the difference of orders of the inner and outer differential operators is well-posed in the Hadamard sense. Based on this result, a justification of the general polynomial projection method for solving the corresponding problem is performed. An application of general results to the proof of the convergence of the polynomial Galerkin method for solving the Cauchy problem in the Sobolev weighted space is given. The convergence rate of the method is characterized in terms of the best polynomial approximations of an exact solution, which automatically responds to the smoothness properties of the coefficients of the equation.
Keywords: Sobolev space, Jacobi–Gegenbauer weight, integro-differential equation, general boundary-value problem, well-posedness, projection method, polynomial approximation, convergence.
Bibliographic databases:
Document Type: Article
UDC: 517.968 : 519.642
MSC: 45J05, 65Q20
Language: Russian
Citation: Yu. R. Agachev, M. Yu. Pershagin, “Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions”, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 175, VINITI, Moscow, 2020, 69–78
Citation in format AMSBIB
\Bibitem{AgaPer20}
\by Yu.~R.~Agachev, M.~Yu.~Pershagin
\paper Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions
\inbook Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018»,
November 23-28, 2018, Kazan. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 175
\pages 69--78
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into578}
\crossref{https://doi.org/10.36535/0233-6723-2020-175-69-78}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4150672}
Linking options:
  • https://www.mathnet.ru/eng/into578
  • https://www.mathnet.ru/eng/into/v175/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :46
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024