Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 175, Pages 19–26
DOI: https://doi.org/10.36535/0233-6723-2020-175-19-26
(Mi into573)
 

Congruences and unitary congruences in matrix theory

Kh. D. Ikramov

Lomonosov Moscow State University
References:
Abstract: This paper is a review of basic facts related to important matrix transformations such as congruence, pseudo-similarity, and unitary congruence. The concept of a rational algorithm is formulated and the question of which problems in the congruence theory can be solved by rational algorithms is discussed.
Keywords: $T$-congruence, $*$-congruence, similarity, pseudo-similarity, canonical form, co-square, Schur form, Youla form, rational algorithm.
Bibliographic databases:
Document Type: Article
UDC: 512.643
MSC: 15A21, 15B99
Language: Russian
Citation: Kh. D. Ikramov, “Congruences and unitary congruences in matrix theory”, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 175, VINITI, Moscow, 2020, 19–26
Citation in format AMSBIB
\Bibitem{Ikr20}
\by Kh.~D.~Ikramov
\paper Congruences and unitary congruences in matrix theory
\inbook Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018»,
November 23-28, 2018, Kazan. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 175
\pages 19--26
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into573}
\crossref{https://doi.org/10.36535/0233-6723-2020-175-19-26}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4150667}
Linking options:
  • https://www.mathnet.ru/eng/into573
  • https://www.mathnet.ru/eng/into/v175/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :292
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024