Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 174, Pages 37–45
DOI: https://doi.org/10.36535/0233-6723-2020-174-37-45
(Mi into566)
 

This article is cited in 1 scientific paper (total in 1 paper)

Operator hypergeometric functions

A. V. Glushak

National Research University "Belgorod State University"
Full-text PDF (182 kB) Citations (1)
References:
Abstract: We consider operator hypergeometric functions ${_1}F_2(\cdot)$ and ${_2}F_3(\cdot)$ constructed by an unbounded operator. Using these functions, we solve Cauchy problems for singular integro-differential equations. A new pair of similar operators is given.
Keywords: transformation operator, Bessel operator function, Bessel–Struve operator function, operator hypergeometric function, integro-differential equation.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00732-a
Bibliographic databases:
Document Type: Article
UDC: 517.983.23
MSC: 34G10
Language: Russian
Citation: A. V. Glushak, “Operator hypergeometric functions”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 174, VINITI, Moscow, 2020, 37–45
Citation in format AMSBIB
\Bibitem{Glu20}
\by A.~V.~Glushak
\paper Operator hypergeometric functions
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 174
\pages 37--45
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into566}
\crossref{https://doi.org/10.36535/0233-6723-2020-174-37-45}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4150659}
Linking options:
  • https://www.mathnet.ru/eng/into566
  • https://www.mathnet.ru/eng/into/v174/p37
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :114
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024