Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 171, Pages 114–117
DOI: https://doi.org/10.36535/0233-6723-2019-171-114-117
(Mi into538)
 

Generalization of a theorem on the equivalence of the coordinate and algebraic definitions of a smooth manifold

M. N. Krein

Lipetsk State Pedagogical University
References:
Abstract: In this paper, we generalize the theorem on the equivalence of the coordinate and algebraic definitions of a smooth manifold. Within the framework of the algebraic approach, a point is considered as a homomorphism from the algebra of smooth real functions defined on a manifold into the field of real numbers. We consider a generalization for the case where the field of real numbers is replaced by an arbitrary associative normalized algebra, generally speaking, noncommutative.
Keywords: associative algebra, manifold, homomorphism of algebras, central algebra.
Document Type: Article
UDC: 512.552, 515.126
MSC: 47A99
Language: Russian
Citation: M. N. Krein, “Generalization of a theorem on the equivalence of the coordinate and algebraic definitions of a smooth manifold”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171, VINITI, Moscow, 2019, 114–117
Citation in format AMSBIB
\Bibitem{Kre19}
\by M.~N.~Krein
\paper Generalization of a theorem on the equivalence of the coordinate and algebraic definitions of a smooth manifold
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 171
\pages 114--117
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into538}
\crossref{https://doi.org/10.36535/0233-6723-2019-171-114-117}
Linking options:
  • https://www.mathnet.ru/eng/into538
  • https://www.mathnet.ru/eng/into/v171/p114
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :58
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024