Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 169, Pages 56–66
DOI: https://doi.org/10.36535/0233-6723-2019-169-56-66
(Mi into515)
 

Lie algebra of killing vector fields and its stationary subalgebra

V. A. Popov

Financial University under the Government of the Russian Federation, Moscow
References:
Abstract: Let $\mathfrak{g}$ be the Lie algebra of all Killing vector fields on a locally homogeneous, analytic Riemannian manifold $M$, $\mathfrak{h}$ be a stationary subalgebra of $\mathfrak{g}$, $G$ be the simply connected group generated by the algebra $\mathfrak{g}$, $H$ be the subgroup of $G$ generated by the subalgebra $\mathfrak{h}$, $\mathfrak{z}$ be the center of the algebra $\mathfrak{g}$, $\mathfrak{r}$ be its radical, and $[\mathfrak{g};\mathfrak{g}]$ be its commutator subgroup. If $\dim\big(\mathfrak{h}\cap\big(\mathfrak{z} + [\mathfrak{g}, \mathfrak{g}] \big)\big) = \dim \big(\mathfrak{h} \cap [\mathfrak{g}, \mathfrak{g}]\big)$, then $H$ is closed in $G$. If for any semisimple subalgebra $\mathfrak{p}\subset\mathfrak{g}$ satisfying the condition $\mathfrak{p}+\mathfrak{r}=\mathfrak{g}$, the relation $(\mathfrak{p}+\mathfrak{z})\cap\mathfrak{h} =\mathfrak{p}\cap\mathfrak{h}$ holds, then $H$ is closed in $G$. We also examine the analytic continuation of the given local, analytic Riemannian manifold.
Keywords: Riemannian manifold, Lie algebra, analytic continuation, vector field, Lie group, closed subgroup.
Document Type: Article
UDC: 514.764
MSC: 53C20, 54H15
Language: Russian
Citation: V. A. Popov, “Lie algebra of killing vector fields and its stationary subalgebra”, Proceedings   of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 169, VINITI, Moscow, 2019, 56–66
Citation in format AMSBIB
\Bibitem{Pop19}
\by V.~A.~Popov
\paper Lie algebra of killing vector fields and its stationary subalgebra
\inbook Proceedings   of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25--28, 2018. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 169
\pages 56--66
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into515}
\crossref{https://doi.org/10.36535/0233-6723-2019-169-56-66}
Linking options:
  • https://www.mathnet.ru/eng/into515
  • https://www.mathnet.ru/eng/into/v169/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :69
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024