Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 168, Pages 114–122
DOI: https://doi.org/10.36535/0233-6723-2019-168-114-122
(Mi into507)
 

Piecewise-linear price function of a differential game with simple dynamics and integral-terminal price functional

L. G. Shagalovaab

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: In this paper, we consider an antagonistic differential game of two persons with dynamics described by a differential equation with simple motions and an integral-terminal board functional. In this game, there exists a price function, which is a generalized (minimax or viscous) solution of the corresponding Hamilton–Jacobi equation. For the case where the terminal function and the Hamiltonian are piecewise linear and the dimension of the phase space is equal to $2$, we propose a finite algorithm for the exact construction of the price function. The algorithm is reduced to the sequential solution of elementary problems arising in a certain order. The piecewise linear price function of a differential game is constructed by gluing piecewise linear solutions of elementary problems. Structural matrices are a convenient tool of representing such functions.
Keywords: differential game, simple motion, price function, Hamilton–Jacobi equation, generalized solution, minimax solution, algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00074
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Foundation for Basic Research (project No. 17-01-00074) and the Ministry of Education and Science of the Russian Federation (project No. 02.A03.21.0006).
Document Type: Article
UDC: 517.977
Language: Russian
Citation: L. G. Shagalova, “Piecewise-linear price function of a differential game with simple dynamics and integral-terminal price functional”, Proceedings   of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 168, VINITI, Moscow, 2019, 114–122
Citation in format AMSBIB
\Bibitem{Sha19}
\by L.~G.~Shagalova
\paper Piecewise-linear price function of a differential game with simple dynamics and integral-terminal price functional
\inbook Proceedings   of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25--28, 2018. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 168
\pages 114--122
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into507}
\crossref{https://doi.org/10.36535/0233-6723-2019-168-114-122}
Linking options:
  • https://www.mathnet.ru/eng/into507
  • https://www.mathnet.ru/eng/into/v168/p114
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :148
    References:34
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025