Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 165, Pages 34–46
DOI: https://doi.org/10.36535/0233-6723-2019-165-34-46
(Mi into465)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the stability of solutions of certain classes of initial-boundary-value problems in aerohydroelasticity

P. A. Vel'misov, A. V. Ankilov, Yu. V. Pokladova

Ulyanovsk State Technical University
Full-text PDF (253 kB) Citations (1)
References:
Abstract: We study the stability of solutions to initial–boundary-value problems for coupled systems of partial differential equations describing the dynamics of deformable structural elements interacting with a gas-liquid medium. The definitions of stability of deformable bodied adopted in this work correspond to the concept of the Lyapunov stability of dynamic systems. The stability of deformable elements of vibration devices interacting with subsonic and supersonic flows is examined. The effect of a gas or liquid (in the model of an ideal compressible medium) is determined from asymptotic equations of aerohydromechanics. For the description of the dynamics of elastic elements, we use nonlinear models of solid deformable bodies with transverse and longitudinal deformations. Models are described by coupled nonlinear systems of partial differential equations. The study of stability is based on the construction of positive-definite Lyapunov-type functionals corresponding to these systems; sufficient conditions for the stability of their solutions are obtained.
Keywords: aerohydroelasticity, mathematical modeling, dynamic stability, elastic plate, subsonic flow, supersonic flow, partial differential equation, functional.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-730015_р_а
This work was supported by the Russian Foundation for basic Research (project No. 18-41-730015).
Bibliographic databases:
Document Type: Article
UDC: 517.957, 539.3, 532.542
MSC: 74F10
Language: Russian
Citation: P. A. Vel'misov, A. V. Ankilov, Yu. V. Pokladova, “On the stability of solutions of certain classes of initial-boundary-value problems in aerohydroelasticity”, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 165, VINITI, Moscow, 2019, 34–46
Citation in format AMSBIB
\Bibitem{VelAnkPok19}
\by P.~A.~Vel'misov, A.~V.~Ankilov, Yu.~V.~Pokladova
\paper On the stability of solutions of certain classes of initial-boundary-value problems in aerohydroelasticity
\inbook Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics".
Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 165
\pages 34--46
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into465}
\crossref{https://doi.org/10.36535/0233-6723-2019-165-34-46}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4030609}
Linking options:
  • https://www.mathnet.ru/eng/into465
  • https://www.mathnet.ru/eng/into/v165/p34
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :86
    References:28
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024