Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 164, Pages 74–95 (Mi into459)  

Modules over discrete valuation domains. III

P. A. Krylova, A. A. Tuganbaevbc

a Tomsk State University
b Lomonosov Moscow State University
c National Research University "Moscow Power Engineering Institute"
References:
Abstract: This review paper is a continuation of two previous review papers devoted to properties of modules over discrete valuation domains. The first and second parts of this work (containing respectively of Chaps. 1–4, Secs. 1–22 and Chaps. 5–8, Secs. 23–39) were published in Journal of Mathematical Sciences (New York), 145, No. 4, 4997–5117 (2007), and 151, No. 5, 3225-3371 (2008).
In this review paper, we continue the numeration of chapters and sections of parts I and II. The present third part consists of Chap. 9 “Appendix,” Secs. 40–42.
In Sec. 40, we consider $p$-adic torsion-free modules with isomorphic automorphism groups. Section 41 is devoted to torsion-free modules over a complete discrete valuation domain with isomorphic radicals of their endomorphism rings. The volume of the paper does not allow us to provide proofs of all results that appeared after publication of the previous parts and directly related to the issues under consideration in it. In the final Section 42, we describe some of these new results.
Keywords: discrete valuation domain, $p$-adic module, endomorphism ring.
Funding agency Grant number
Russian Science Foundation 16-11-10013
The work of A. A. Tuganbaev was supported by the Russian Science Foundation (project No. 16-11-10013).
Bibliographic databases:
Document Type: Article
UDC: 512.715
MSC: 13C05, 13F30, 13F10
Language: Russian
Citation: P. A. Krylov, A. A. Tuganbaev, “Modules over discrete valuation domains. III”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164, VINITI, Moscow, 2019, 74–95
Citation in format AMSBIB
\Bibitem{KryTug19}
\by P.~A.~Krylov, A.~A.~Tuganbaev
\paper Modules over discrete valuation domains. III
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 164
\pages 74--95
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4014983}
Linking options:
  • https://www.mathnet.ru/eng/into459
  • https://www.mathnet.ru/eng/into/v164/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :81
    References:40
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024