Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 164, Pages 3–73 (Mi into458)  

Arithmetical rings

A. A. Tuganbaevab

a Lomonosov Moscow State University
b National Research University "Moscow Power Engineering Institute"
References:
Abstract: In this paper, some familiar and new results on arithmetical rings, modules, and Besout rings (not necessarily commutative) are provided. In particular, we examine relationships between arithmetical rings and their localizations by maximal ideals, saturated submodules and saturations, localizable rings, properties of annihilators of finitely generated modules over arithmetical rings, diagonalizable rings, rings with flat right ideals, and rings with quasi-projective finitely generated right ideals, Hermite rings, Pierce stalks, and rings with Krull dimension.
Keywords: arithmetic ring, distribution module, flat module, localization by maximal ideal, Bezout ring, Hermite ring, diagonalizable ring, Pierce stalk.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00452-А
Russian Science Foundation 16-11-10013
This work was supported by the Russian Foundation for Basic Research (project No. 14-01-00452-А) and the Russian Science Foundation (project No. 16-11-10013).
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. A. Tuganbaev, “Arithmetical rings”, Algebra, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164, VINITI, Moscow, 2019, 3–73
Citation in format AMSBIB
\Bibitem{Tug19}
\by A.~A.~Tuganbaev
\paper Arithmetical rings
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 164
\pages 3--73
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into458}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4014982}
Linking options:
  • https://www.mathnet.ru/eng/into458
  • https://www.mathnet.ru/eng/into/v164/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:198
    Full-text PDF :156
    References:30
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024