Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 163, Pages 65–80 (Mi into451)  

Parametric resonance in integrable systems and averaging on Riemann surfaces

V. Yu. Novokshenov

Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
References:
Abstract: In this paper, we consider adiabatic deformations of Riemann surfaces that preserve the integrability of the corresponding dynamic system, which leads to the appearance of modulated quasi-periodic motions, similar to the effect of parametric resonance. We show that in this way it is possible to control the amplitude and frequency of nonlinear modes. We consider several examples of the dynamics of top-type systems.
Keywords: integrable system, Lax pair, algebraic-geometric method, finite-gap solution, theta function, invariant torus, parametric resonance, Whitham deformation, synchronization, phase capture.
Bibliographic databases:
Document Type: Article
UDC: 517.928, 517.933, 517.984.54
MSC: 37J35, 37K15, 37K20
Language: Russian
Citation: V. Yu. Novokshenov, “Parametric resonance in integrable systems and averaging on Riemann surfaces”, Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 163, VINITI, Moscow, 2019, 65–80
Citation in format AMSBIB
\Bibitem{Nov19}
\by V.~Yu.~Novokshenov
\paper Parametric resonance in integrable systems and averaging on Riemann surfaces
\inbook Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 163
\pages 65--80
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into451}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4014976}
Linking options:
  • https://www.mathnet.ru/eng/into451
  • https://www.mathnet.ru/eng/into/v163/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :118
    References:34
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024