Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 163, Pages 39–64 (Mi into450)  

This article is cited in 1 scientific paper (total in 1 paper)

Existence of a renormalized solution of a parabolic problem in anisotropic Sobolev–Orlicz spaces

N. A. Vorobyeva, F. Kh. Mukminovbc

a Mavlyutov Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences
b Ufa State Aviation Technical University
c Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
Full-text PDF (421 kB) Citations (1)
References:
Abstract: We consider the first mixed problem for a certain class of anisotropic parabolic equations of the form
$$ (\beta(x,u))'_t-\operatorname{div} a(t,x,u,\nabla u) -b(t,x,u,\nabla u)=\mu $$
where $\mu$ is a measure and the coefficients contain noonpower nonlinearities in the cylindrical domain $D^T=(0,T)\times\Omega$, where $\Omega\subset \mathbb{R}^n$ is a bounded domain. We prove the existence of a renormalized solution of the problem for $g_t=0$ and a function $\beta(x,r)$, which increases with respect to $r$ and satisfies the Carathéodory condition.
Keywords: anisotropic parabolic equation, renormalized solution, nonpower nonlinearity, existence of solutions, $N$-function.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00428а
This work was supported by the Russian Foundation for Basic Research (project No. 18-01-00428а).
Bibliographic databases:
Document Type: Article
UDC: 517.954, 517.956.45, 517.958:531.72
MSC: 35K20, 35K55, 35K65
Language: Russian
Citation: N. A. Vorobyev, F. Kh. Mukminov, “Existence of a renormalized solution of a parabolic problem in anisotropic Sobolev–Orlicz spaces”, Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 163, VINITI, Moscow, 2019, 39–64
Citation in format AMSBIB
\Bibitem{VorMuk19}
\by N.~A.~Vorobyev, F.~Kh.~Mukminov
\paper Existence of a renormalized solution of a parabolic problem in anisotropic Sobolev--Orlicz spaces
\inbook Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 163
\pages 39--64
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into450}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4014975}
Linking options:
  • https://www.mathnet.ru/eng/into450
  • https://www.mathnet.ru/eng/into/v163/p39
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :98
    References:45
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024