Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 163, Pages 25–38 (Mi into449)  

Uniform asymptotics of the sine amplitude function

O. M. Kiselev

Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
References:
Abstract: Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of an elliptic function in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics.
Keywords: elliptic function, asymptotics, series.
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 33-02, 33E05
Language: Russian
Citation: O. M. Kiselev, “Uniform asymptotics of the sine amplitude function”, Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 163, VINITI, Moscow, 2019, 25–38
Citation in format AMSBIB
\Bibitem{Kis19}
\by O.~M.~Kiselev
\paper Uniform asymptotics of the sine amplitude function
\inbook Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 163
\pages 25--38
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4014974}
Linking options:
  • https://www.mathnet.ru/eng/into449
  • https://www.mathnet.ru/eng/into/v163/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :181
    References:27
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024