Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 162, Pages 136–150 (Mi into446)  

Invariant manifolds of hyperbolic integrable equations and their applications

I. T. Habibullinab, A. R. Khakimovab

a Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
b Bashkir State University, Ufa
References:
Abstract: We assign some kind of invariant manifolds to a given integrable PDE (its discrete or semi-discrete variant). First, we linearize the equation around its arbitrary solution $u$. Then we construct a differential (respectively, difference) equation compatible with the linearized equation for any choice of $u$. This equation defines a surface called a generalized invariant manifold. In a sense, the manifold generalizes the symmetry, which is also a solution to the linearized equation. In this paper, we concentrate on continuous and discrete models of hyperbolic type. It is known that such kind equations have two hierarchies of symmetries, corresponding to the characteristic directions. We have shown that properly chosen generalized invariant manifold allows one to construct recursion operators that generate these symmetries. It is surprising that both recursion operators are related to different parametrizations of the same invariant manifold. Therefore, knowing one of the recursion operators for the hyperbolic type integrable equation (having no pseudo-constants) we can immediately find the second one.
Keywords: integrability, Lax pair, invariant manifold, recursion operator, quad equation.
Bibliographic databases:
Document Type: Article
UDC: 517.962.9
MSC: 35L10, 39A14
Language: Russian
Citation: I. T. Habibullin, A. R. Khakimova, “Invariant manifolds of hyperbolic integrable equations and their applications”, Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI, Moscow, 2019, 136–150
Citation in format AMSBIB
\Bibitem{HabKha19}
\by I.~T.~Habibullin, A.~R.~Khakimova
\paper Invariant manifolds of hyperbolic integrable equations and their applications
\inbook Complex Analysis. Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 162
\pages 136--150
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3981822}
Linking options:
  • https://www.mathnet.ru/eng/into446
  • https://www.mathnet.ru/eng/into/v162/p136
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :98
    References:36
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024