Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 160, Pages 32–41 (Mi into422)  

On the number of solutions for a certain class of nonlinear second-order boundary-value problems

A. V. Kirichukaa, F. Zh. Sadyrbaevb

a Daugavpils University
b University of Latvia, Institute of Mathematics and Computer Science
References:
Abstract: The boundary-value problem for the differential equation with quadratic nonlinearity $x''=-ax+b x^2$ with the boundary conditions $x'(0)=x'(T)=0$ is is considered. The number of solutions of for the boundary-value problem is found. An illustrative example is presented.
Keywords: boundary-value problem, quadratic nonlinearity, phase trajectory, multiplicity of solutions, Jacobian elliptic function.
Bibliographic databases:
Document Type: Article
UDC: 517, 531.01
MSC: 34B15, 34C10, 34C37
Language: Russian
Citation: A. V. Kirichuka, F. Zh. Sadyrbaev, “On the number of solutions for a certain class of nonlinear second-order boundary-value problems”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 160, VINITI, Moscow, 2019, 32–41
Citation in format AMSBIB
\Bibitem{KirSad19}
\by A.~V.~Kirichuka, F.~Zh.~Sadyrbaev
\paper On the number of solutions for a certain class of nonlinear second-order boundary-value problems
\inbook Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17,
St. Petersburg Polytechnic University, July 24-28, 2017
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 160
\pages 32--41
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into422}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3981828}
Linking options:
  • https://www.mathnet.ru/eng/into422
  • https://www.mathnet.ru/eng/into/v160/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024