|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 158, Pages 40–80
(Mi into412)
|
|
|
|
Subrings of invariants for actions of finite-dimensional Hopf algebras
S. M. Skryabin Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University
Abstract:
This paper is a survey of recent work on invariants of actions of Hopf algebras. Its highlights are results on integrality of $H$-module PI algebras over the subrings of invariant elements obtained by P. Etingof and M. Eryashkin. Older results are also reviewed.
Keywords:
Hopf algebras, $H$-module algebras, invariants.
Citation:
S. M. Skryabin, “Subrings of invariants for actions of finite-dimensional Hopf algebras”, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 158, VINITI, Moscow, 2018, 40–80; J. Math. Sci. (N. Y.), 256:2 (2021), 160–198
Linking options:
https://www.mathnet.ru/eng/into412 https://www.mathnet.ru/eng/into/v158/p40
|
Statistics & downloads: |
Abstract page: | 151 | Full-text PDF : | 79 | References: | 17 | First page: | 2 |
|