Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 157, Pages 59–69 (Mi into407)  

This article is cited in 1 scientific paper (total in 1 paper)

Degrees of enumerations of countable Wehner-like families

I. Sh. Kalimullin, M. Kh. Faizrakhmanov

Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University
Full-text PDF (239 kB) Citations (1)
References:
Abstract: The paper is a survey of results on countable families with natural degree spectra. These results were obtained by a modification of the methodology proposed by Wechner, who first found a family of sets with the spectrum consisting precisely of nonzero Turing degrees. Based on this method, many researchers obtained examples of families with another natural spectra. In addition, the paper extends these results presenting new examples of natural spectra. In particular, a family of finite sets with the spectrum consisting of exactly non-$K$-trivial degrees are constructed, and also we find new sufficient conditions on $\Delta^0_2$-degree $\mathbf{a}$ which guarantees that the class $\{\mathbf{x}: \mathbf{x}\not\leqslant\mathbf{a}\}$ is the degree spectrum of some family. Finally, we give a survey of our recent results on the degree spectra of $\alpha$-families, where $\alpha$ is an arbitrary computable ordinal.
Keywords: degree spectra, countable family, enumeration of family, algebraic structure, $\alpha$-family.
Funding agency Grant number
Russian Science Foundation 18-11-00028
Ministry of Education and Science of the Russian Federation 1.451.2016/1.4
1.1515.2017/4.6
This work was partially supported by the Russian Science Foundation (project No. 18-11-00028, I. Sh. Kalimullin) and the Ministry of Education and Science of the Russian Federation (project Nos. 1.451.2016/1.4, I. Sh. Kalimullin and 1.1515.2017/4.6, M.. Kh. Faizrakhmanov).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 256, Issue 1, Pages 51–60
DOI: https://doi.org/10.1007/s10958-021-05420-4
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 03D20, 03D45
Language: Russian
Citation: I. Sh. Kalimullin, M. Kh. Faizrakhmanov, “Degrees of enumerations of countable Wehner-like families”, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157, VINITI, Moscow, 2018, 59–69; J. Math. Sci. (N. Y.), 256:1 (2021), 51–60
Citation in format AMSBIB
\Bibitem{KalFai18}
\by I.~Sh.~Kalimullin, M.~Kh.~Faizrakhmanov
\paper Degrees of enumerations of countable Wehner-like families
\inbook Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 157
\pages 59--69
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into407}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3940083}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 256
\issue 1
\pages 51--60
\crossref{https://doi.org/10.1007/s10958-021-05420-4}
Linking options:
  • https://www.mathnet.ru/eng/into407
  • https://www.mathnet.ru/eng/into/v157/p59
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :59
    References:38
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024