|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 157, Pages 42–58
(Mi into406)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Categoricity spectra of computable structures
N. A. Bazhenovab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Abstract:
The categoricity spectrum of a computable structure $S$ is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable presentations of $S$. The degree of categoricity of $S$ is the least degree in the categoricity spectrum of $S$. The paper gives a survey of results on categoricity spectra and degrees of categoricity for computable structures. We focus on the results about degrees of categoricity for linear orders and Boolean algebras. We build a new series of examples of degrees of categoricity for linear orders.
Keywords:
computable categoricity, categoricity spectrum, degree of categoricity, computable structure, linear order, Boolean algebra, decidable categoricity, autostability, autostability relative to strong constructivizations, index set.
Citation:
N. A. Bazhenov, “Categoricity spectra of computable structures”, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157, VINITI, Moscow, 2018, 42–58; J. Math. Sci. (N. Y.), 256:1 (2021), 34–50
Linking options:
https://www.mathnet.ru/eng/into406 https://www.mathnet.ru/eng/into/v157/p42
|
Statistics & downloads: |
Abstract page: | 216 | Full-text PDF : | 76 | References: | 34 | First page: | 2 |
|