Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 156, Pages 103–105 (Mi into401)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic behavior of solutions to a Cauchy problem with a turning point in the case of change of stability

E. A. Tursunov

Osh State University
Full-text PDF (132 kB) Citations (1)
References:
Abstract: We prove the existence of solutions to a perturbed Cauchy problem on an infinite interval and obtain asymptotic estimates of the proximity of solutions to the perturbed and nonperturbed problems on an infinite interval containing an unstable interval.
Keywords: singularly perturbed Cauchy problem, asymptotic stability, asymptotics, small parameter, turning point, unstable interval.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 254, Issue 6, Pages 808–810
DOI: https://doi.org/10.1007/s10958-021-05342-1
Bibliographic databases:
Document Type: Article
UDC: 517.928
MSC: 34E20
Language: Russian
Citation: E. A. Tursunov, “Asymptotic behavior of solutions to a Cauchy problem with a turning point in the case of change of stability”, Mathematical Analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 156, VINITI, Moscow, 2018, 103–105; J. Math. Sci. (N. Y.), 254:6 (2021), 808–810
Citation in format AMSBIB
\Bibitem{Tur18}
\by E.~A.~Tursunov
\paper Asymptotic behavior of solutions to a Cauchy problem with a turning point in the case of change of stability
\inbook Mathematical Analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 156
\pages 103--105
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into401}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3939200}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 254
\issue 6
\pages 808--810
\crossref{https://doi.org/10.1007/s10958-021-05342-1}
Linking options:
  • https://www.mathnet.ru/eng/into401
  • https://www.mathnet.ru/eng/into/v156/p103
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :47
    References:16
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024