Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 156, Pages 89–102 (Mi into400)  

This article is cited in 18 scientific papers (total in 18 papers)

Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney–Luke integro-differential equation with degenerate kernel

T. K. Yuldashev

M. F. Reshetnev Siberian State University of Science and Technologies
References:
Abstract: Using the Fourier method of separation of variables, we examine the classical solvability and construct solutions of a nonlocal inverse boundary-value problem for the fourth-order Benney–Luke integro-differential equation with degenerate kernel. We prove the criterion of the unique solvability of the inverse boundary-value problem and examine the stability of solutions with respect to the recovery function.
Keywords: integro-differential equation, Benney–Luke equation, fourth-order equation, degenerate kernel, integral condition, classical solvability.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 254, Issue 6, Pages 793–807
DOI: https://doi.org/10.1007/s10958-021-05341-2
Bibliographic databases:
Document Type: Article
UDC: 517.968
MSC: 35A02, 35M10, 35S05
Language: Russian
Citation: T. K. Yuldashev, “Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney–Luke integro-differential equation with degenerate kernel”, Mathematical Analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 156, VINITI, Moscow, 2018, 89–102; J. Math. Sci. (N. Y.), 254:6 (2021), 793–807
Citation in format AMSBIB
\Bibitem{Yul18}
\by T.~K.~Yuldashev
\paper Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney--Luke integro-differential equation with degenerate kernel
\inbook Mathematical Analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 156
\pages 89--102
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into400}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3939199}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 254
\issue 6
\pages 793--807
\crossref{https://doi.org/10.1007/s10958-021-05341-2}
Linking options:
  • https://www.mathnet.ru/eng/into400
  • https://www.mathnet.ru/eng/into/v156/p89
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :97
    References:38
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024