|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 156, Pages 73–83
(Mi into398)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Mixed problem for a higher-order nonlinear pseudoparabolic equation
T. K. Yuldasheva, K. H. Shabadikovb a M. F. Reshetnev Siberian State University of Science and Technologies
b Ferghana State University
Abstract:
We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters.
Keywords:
pseudoparabolic equation, generalized derivative, method of successive approximations, parameter, unique solvability.
Citation:
T. K. Yuldashev, K. H. Shabadikov, “Mixed problem for a higher-order nonlinear pseudoparabolic equation”, Mathematical Analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 156, VINITI, Moscow, 2018, 73–83; J. Math. Sci. (N. Y.), 254:6 (2021), 776–787
Linking options:
https://www.mathnet.ru/eng/into398 https://www.mathnet.ru/eng/into/v156/p73
|
Statistics & downloads: |
Abstract page: | 214 | Full-text PDF : | 106 | References: | 44 | First page: | 4 |
|