Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 156, Pages 30–40 (Mi into395)  

This article is cited in 3 scientific papers (total in 3 papers)

Dirichlet problem for an elliptic equation with three singular coefficients

A. K. Urinov, K. T. Karimov

Ferghana State University
Full-text PDF (203 kB) Citations (3)
References:
Abstract: We prove the unique solvability of the first boundary-value problem for an elliptic equation with three singular coefficients in a rectangular parallelepiped. Using the method of energy integrals, we prove the uniqueness of a solution to the problem. We prove the existence of a solution by the spectral Fourier method based on the separation of variables. A solution to the problem is constructed in the form of a double Fourier–Bessel series. The justification of the uniform convergence of this series is based on asymptotic methods. We obtain an estimate, which allows one to prove the convergence of the series and its derivatives up to the second order and the existence theorem for the class of regular solutions of the equation considered.
Keywords: Dirichlet problem, elliptic equation, spectral method, uniqueness of solution, existence of solution.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 254, Issue 6, Pages 731–742
DOI: https://doi.org/10.1007/s10958-021-05336-z
Bibliographic databases:
Document Type: Article
UDC: 517.956.223
MSC: 35A10, 35M12
Language: Russian
Citation: A. K. Urinov, K. T. Karimov, “Dirichlet problem for an elliptic equation with three singular coefficients”, Mathematical Analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 156, VINITI, Moscow, 2018, 30–40; J. Math. Sci. (N. Y.), 254:6 (2021), 731–742
Citation in format AMSBIB
\Bibitem{UriKar18}
\by A.~K.~Urinov, K.~T.~Karimov
\paper Dirichlet problem for an elliptic equation with three singular coefficients
\inbook Mathematical Analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 156
\pages 30--40
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3939194}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 254
\issue 6
\pages 731--742
\crossref{https://doi.org/10.1007/s10958-021-05336-z}
Linking options:
  • https://www.mathnet.ru/eng/into395
  • https://www.mathnet.ru/eng/into/v156/p30
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :85
    References:22
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024