|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 156, Pages 18–29
(Mi into394)
|
|
|
|
Gevrey problem for a mixed parabolic equation with singular coefficients
A. O. Mamanazarov Ferghana State University
Abstract:
In this paper, we examine the unique solvability of the Gevrey problem for a mixed parabolic equation with singular coefficients in a band. We prove the existence and uniqueness of a solution to the problem stated. The uniqueness of a solution is proved by the method of energy integrals and the existence by methods of the theory of Volterra, Fredholm, and singular integral equations.
Keywords:
Gevrey problem, mixed parabolic equation, singular coefficient, uniqueness of solution, existence of solution.
Citation:
A. O. Mamanazarov, “Gevrey problem for a mixed parabolic equation with singular coefficients”, Mathematical Analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 156, VINITI, Moscow, 2018, 18–29; J. Math. Sci. (N. Y.), 254:6 (2021), 718–730
Linking options:
https://www.mathnet.ru/eng/into394 https://www.mathnet.ru/eng/into/v156/p18
|
Statistics & downloads: |
Abstract page: | 219 | Full-text PDF : | 73 | References: | 30 | First page: | 3 |
|