Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 156, Pages 18–29 (Mi into394)  

Gevrey problem for a mixed parabolic equation with singular coefficients

A. O. Mamanazarov

Ferghana State University
References:
Abstract: In this paper, we examine the unique solvability of the Gevrey problem for a mixed parabolic equation with singular coefficients in a band. We prove the existence and uniqueness of a solution to the problem stated. The uniqueness of a solution is proved by the method of energy integrals and the existence by methods of the theory of Volterra, Fredholm, and singular integral equations.
Keywords: Gevrey problem, mixed parabolic equation, singular coefficient, uniqueness of solution, existence of solution.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 254, Issue 6, Pages 718–730
DOI: https://doi.org/10.1007/s10958-021-05335-0
Bibliographic databases:
Document Type: Article
UDC: 517.956
MSC: 35A01, 35K20
Language: Russian
Citation: A. O. Mamanazarov, “Gevrey problem for a mixed parabolic equation with singular coefficients”, Mathematical Analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 156, VINITI, Moscow, 2018, 18–29; J. Math. Sci. (N. Y.), 254:6 (2021), 718–730
Citation in format AMSBIB
\Bibitem{Mam18}
\by A.~O.~Mamanazarov
\paper Gevrey problem for a mixed parabolic equation with singular coefficients
\inbook Mathematical Analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 156
\pages 18--29
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into394}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3939193}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 254
\issue 6
\pages 718--730
\crossref{https://doi.org/10.1007/s10958-021-05335-0}
Linking options:
  • https://www.mathnet.ru/eng/into394
  • https://www.mathnet.ru/eng/into/v156/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :73
    References:30
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024