Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 155, Pages 89–97 (Mi into391)  

On certain applications of the hyperbolic heat transfer equation and methods for its solution

V. N. Khankhasaev, E. V. Darmakheev

East Suberia State University of Technology and Management, Ulan-Ude
References:
Abstract: When creating new technological processes based on the use of high-intensity energy flows, it is necessary to take into account the finite speed of heat transfer. This can be done by using the hyperbolic heat transfer equation obtained by A. V. Lykov within the framework of nonequilibrium phenomenological thermodynamics as a consequence of a generalization of the Fourier law for flows and the equation of thermal balance. In previous works, V. N. Khankhasaev modeled the process of switching off an electric arc in a gas flow using this equation. In this paper, we present a mathematical model of this process including the period of stable burning of an electric arc until to the shutdown moment, which consists of the replacement of the strongly hyperbolic heat transfer equation by a hyperbolic-parabolic equation. For the mixed heat transfer equation obtained, we state certain boundary-value problems, solve them by numerical algorithms, and obtain temperature fields that are well consistent with the available experimental data.
Keywords: hyperbolic-parabolic equation, hyperbolic heat transfer equation, scheme of variable directions, Navier–Stokes equation, heat balance.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 254, Issue 5, Pages 677–685
DOI: https://doi.org/10.1007/s10958-021-05332-3
Bibliographic databases:
Document Type: Article
UDC: 517.95; 532.5
MSC: 80A17; 65N06
Language: Russian
Citation: V. N. Khankhasaev, E. V. Darmakheev, “On certain applications of the hyperbolic heat transfer equation and methods for its solution”, Mathematical Analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 155, VINITI, Moscow, 2018, 89–97; J. Math. Sci. (N. Y.), 254:5 (2021), 677–685
Citation in format AMSBIB
\Bibitem{KhaDar18}
\by V.~N.~Khankhasaev, E.~V.~Darmakheev
\paper On certain applications of the hyperbolic heat transfer equation and methods for its solution
\inbook Mathematical Analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 155
\pages 89--97
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into391}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3904906}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 254
\issue 5
\pages 677--685
\crossref{https://doi.org/10.1007/s10958-021-05332-3}
Linking options:
  • https://www.mathnet.ru/eng/into391
  • https://www.mathnet.ru/eng/into/v155/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :98
    References:27
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024