Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 154, Pages 123–137 (Mi into386)  

This article is cited in 1 scientific paper (total in 1 paper)

Principle of Minimizing Empirical Risk and Averaging Aggregate Functions

Z. M. Shibzukhovab

a Institute of Applied Mathematics and Automation, Nalchik
b Moscow State Pedagogical University
Full-text PDF (655 kB) Citations (1)
References:
Abstract: In this paper, we propose an extended version of the principle of minimizing empirical risk (ER) based on the use of averaging aggregating functions (AAF) for calculating the ER instead of the arithmetic mean. This is expedient if the distribution of losses has outliers and hence risk assessments are biased. Therefore, a robust estimate of the average risk should be used for optimization the parameters. Such estimates can be constructed by using AAF that which are solutions of the problem of minimizing the penalty function for deviating from the mean value. We also propose an iterative reweighting scheme for the numerical solution of the ER minimization problem. We give examples of constructing a robust procedure for estimating parameters in a linear regression problem and a linear separation problem for two classes based on the use of an averaging aggregating function that replaces the $\alpha$-quantile.
Keywords: empirical risk, averaging function, aggregation function, loss function, iterative reweighing algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03381_à
Russian Academy of Sciences - Federal Agency for Scientific Organizations
This work was supported by the Russian Foundation for Basic Research (project No. 15-01-03381) and a fundamental scientific project of the Department of Nanotechnology and Information Technology of the Russian Academy of Sciences.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 253, Issue 4, Pages 583–598
DOI: https://doi.org/10.1007/s10958-021-05256-y
Bibliographic databases:
Document Type: Article
UDC: 519.7
MSC: 68T05
Language: Russian
Citation: Z. M. Shibzukhov, “Principle of Minimizing Empirical Risk and Averaging Aggregate Functions”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 154, VINITI, Moscow, 2018, 123–137; J. Math. Sci. (N. Y.), 253:4 (2021), 583–598
Citation in format AMSBIB
\Bibitem{Shi18}
\by Z.~M.~Shibzukhov
\paper Principle of Minimizing Empirical Risk and Averaging Aggregate Functions
\inbook Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 154
\pages 123--137
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into386}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3904975}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 253
\issue 4
\pages 583--598
\crossref{https://doi.org/10.1007/s10958-021-05256-y}
Linking options:
  • https://www.mathnet.ru/eng/into386
  • https://www.mathnet.ru/eng/into/v154/p123
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :545
    References:22
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024