Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 154, Pages 113–122 (Mi into385)  

This article is cited in 3 scientific papers (total in 3 papers)

Nonlocal Turbulent Diffusion Models

V. V. Uchaikin

Ulyanovsk State University
Full-text PDF (213 kB) Citations (3)
References:
Abstract: A brief review of the emergence and development of the nonlocal approach to the problem of turbulent diffusion with a discussion of the physical reasons of the nonlocality is given. The main attention is paid to fractional differential operators. In concluding the paper, the author's original results on applications to the diffusion of cosmic rays in the interstellar galactic medium are presented.
Keywords: Brownian motion, anomalous diffusion, fractional Laplacian, Levy–Feldheim distribution, self-similarity.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00556_à
This work was supported by the Russian Foundation for Basic Research (project No. 16-01-00556).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 253, Issue 4, Pages 573–582
DOI: https://doi.org/10.1007/s10958-021-05255-z
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 91B70
Language: Russian
Citation: V. V. Uchaikin, “Nonlocal Turbulent Diffusion Models”, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 154, VINITI, Moscow, 2018, 113–122; J. Math. Sci. (N. Y.), 253:4 (2021), 573–582
Citation in format AMSBIB
\Bibitem{Uch18}
\by V.~V.~Uchaikin
\paper Nonlocal Turbulent Diffusion Models
\inbook Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 154
\pages 113--122
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3904974}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 253
\issue 4
\pages 573--582
\crossref{https://doi.org/10.1007/s10958-021-05255-z}
Linking options:
  • https://www.mathnet.ru/eng/into385
  • https://www.mathnet.ru/eng/into/v154/p113
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :138
    References:29
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024