|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 153, Pages 151–157
(Mi into371)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
I. A. Shakirov Naberezhnye Chelny State Pedagogical University
Abstract:
Well-known two-sided estimates for the Lebesgue constants of two classical trigonometric interpolation Lagrange polynomials are improved. Approximations of these Lebesgue constants are based on logarithmic functions with shifted arguments.
Keywords:
Lagrange interpolation polynomial, remainder term, Lebesgue constant, approximation by logarithmic functions, extremal problem, best approximation element.
Citation:
I. A. Shakirov, “Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 153, VINITI, Moscow, 2018, 151–157; J. Math. Sci. (N. Y.), 252:3 (2021), 445–452
Linking options:
https://www.mathnet.ru/eng/into371 https://www.mathnet.ru/eng/into/v153/p151
|
|