Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 153, Pages 151–157 (Mi into371)  

This article is cited in 1 scientific paper (total in 1 paper)

Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument

I. A. Shakirov

Naberezhnye Chelny State Pedagogical University
Full-text PDF (179 kB) Citations (1)
References:
Abstract: Well-known two-sided estimates for the Lebesgue constants of two classical trigonometric interpolation Lagrange polynomials are improved. Approximations of these Lebesgue constants are based on logarithmic functions with shifted arguments.
Keywords: Lagrange interpolation polynomial, remainder term, Lebesgue constant, approximation by logarithmic functions, extremal problem, best approximation element.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 3, Pages 445–452
DOI: https://doi.org/10.1007/s10958-020-05172-7
Bibliographic databases:
Document Type: Article
UDC: 517.518.85
MSC: 42A15
Language: Russian
Citation: I. A. Shakirov, “Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 153, VINITI, Moscow, 2018, 151–157; J. Math. Sci. (N. Y.), 252:3 (2021), 445–452
Citation in format AMSBIB
\Bibitem{Sha18}
\by I.~A.~Shakirov
\paper Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
\inbook Complex analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 153
\pages 151--157
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903399}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 3
\pages 445--452
\crossref{https://doi.org/10.1007/s10958-020-05172-7}
Linking options:
  • https://www.mathnet.ru/eng/into371
  • https://www.mathnet.ru/eng/into/v153/p151
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024