Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 153, Pages 143–150 (Mi into370)  

Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points

A. Kh. Fatykhov, P. L. Shabalin

Kazan State University of Architecture and Engineering
References:
Abstract: In this paper, we describe the inhomogeneous Hilbert boundary-value problem of the theory of analytic functions with an infinite index and a boundary condition for a half-plane. The coefficients of the boundary condition are Hölder-continuous everywhere except for a finite number of singular points at which the argument of the coefficient function has second-type discontinuities (of a power order with exponent $<1$). We obtain formulas for the general solution of the inhomogeneous problem and discuss the existence and uniqueness of the solution. The study is based on the theory of entire functions and the geometric theory of functions of a complex variable.
Keywords: Hilbert problem, Phragmén–Lindelöf principle, infinite index, entire functions.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00282_a
This work was supported by the Russian Foundation for Basic Research (project No. 17-01-00282-a).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 3, Pages 436–444
DOI: https://doi.org/10.1007/s10958-020-05171-8
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30E25, 35Q15
Language: Russian
Citation: A. Kh. Fatykhov, P. L. Shabalin, “Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 153, VINITI, Moscow, 2018, 143–150; J. Math. Sci. (N. Y.), 252:3 (2021), 436–444
Citation in format AMSBIB
\Bibitem{FatSha18}
\by A.~Kh.~Fatykhov, P.~L.~Shabalin
\paper Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points
\inbook Complex analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 153
\pages 143--150
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into370}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903398}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 3
\pages 436--444
\crossref{https://doi.org/10.1007/s10958-020-05171-8}
Linking options:
  • https://www.mathnet.ru/eng/into370
  • https://www.mathnet.ru/eng/into/v153/p143
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024