Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 153, Pages 108–127 (Mi into367)  

This article is cited in 1 scientific paper (total in 1 paper)

Interpolation Problems of A. F. Leontiev Type

K. G. Malyutin

Southwest State University, Kursk
Full-text PDF (310 kB) Citations (1)
References:
Abstract: In this paper, we discuss free interpolation in the spaces of entire and analytic finite-order functions in the upper half-plane. A review of problems and basic results related to such problems is given. Solvability criteria are formulated in terms of canonical products of interpolation nodes and in terms of the measure determined by these nodes.
Keywords: free interpolation, generalized Lagrange series, entire function, proximate order, divisor, canonical function, half-plane, Riesz measure, generalized Jones series.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 3, Pages 399–419
DOI: https://doi.org/10.1007/s10958-020-05168-3
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D15, 30H50
Language: Russian
Citation: K. G. Malyutin, “Interpolation Problems of A. F. Leontiev Type”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 153, VINITI, Moscow, 2018, 108–127; J. Math. Sci. (N. Y.), 252:3 (2021), 399–419
Citation in format AMSBIB
\Bibitem{Mal18}
\by K.~G.~Malyutin
\paper Interpolation Problems of A.~F.~Leontiev Type
\inbook Complex analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 153
\pages 108--127
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into367}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903395}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 3
\pages 399--419
\crossref{https://doi.org/10.1007/s10958-020-05168-3}
Linking options:
  • https://www.mathnet.ru/eng/into367
  • https://www.mathnet.ru/eng/into/v153/p108
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024