Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 153, Pages 94–107 (Mi into366)  

This article is cited in 1 scientific paper (total in 1 paper)

Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis

B. E. Kanguzhin

Al-Farabi Kazakh National University
Full-text PDF (227 kB) Citations (1)
References:
Abstract: In this paper, we study spectral decompositions with respect to a system of generalized eigenvectors of second-order differential operators on the interval whose resolvents possess convolution representations. We obtain the convolution representation of resolvents of second-order differential operators on an interval with integral boundary conditions. Then, using the convolution generated by the initial differential operator, we construct the Fourier transform. A connection between the convolution operation in the original functional space and the multiplication operation in the space of Fourier transforms is established. Finally, the problem on the convergence of spectral expansions generated by the original differential operator is studied. Examples of convolutions generated by operators are also presented.
Keywords: convolution, spectral decomposition, resolvent, boundary-value problem, differential operator, boundary form.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan 0757/ГФ4
This work was supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (project 0757/GF4).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 3, Pages 384–398
DOI: https://doi.org/10.1007/s10958-020-05167-4
Bibliographic databases:
Document Type: Article
UDC: 517.984, 517.927.2
MSC: 34B05, 34L05
Language: Russian
Citation: B. E. Kanguzhin, “Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 153, VINITI, Moscow, 2018, 94–107; J. Math. Sci. (N. Y.), 252:3 (2021), 384–398
Citation in format AMSBIB
\Bibitem{Kan18}
\by B.~E.~Kanguzhin
\paper Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis
\inbook Complex analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 153
\pages 94--107
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into366}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903394}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 3
\pages 384--398
\crossref{https://doi.org/10.1007/s10958-020-05167-4}
Linking options:
  • https://www.mathnet.ru/eng/into366
  • https://www.mathnet.ru/eng/into/v153/p94
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024