Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 153, Pages 13–28 (Mi into361)  

This article is cited in 2 scientific papers (total in 2 papers)

Representing Systems of Exponentials in Weight Subspaces $H(D)$

R. A. Bashmakova, K. P. Isaevba, R. S. Yulmukhametovba

a Bashkir State University, Ufa
b Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
Full-text PDF (265 kB) Citations (2)
References:
Abstract: In this paper, weight subspaces of the space of analytic functions on a bounded convex domain of the complex plane are considered. Descriptions of spaces that are strongly conjugate to inductive and projective limits of uniformly weight spaces of analytic functions in a bounded convex domain $D\subset \mathbb C$ are obtained in terms of the Fourier–Laplace transformation. For each normed uniformly weight space $H(D,u)$, the smallest linear space $\mathcal H_i(D,u)$ that contains $H(D,u)$ and is invariant under differentiation and the largest linear space $\mathcal H_p(D,u)$ that is contained in $H(D,u)$ and is invariant under differentiation are constructed. Natural locally convex topologies are introduced on these spaces and a description of strongly conjugate spaces in terms of the Fourier–Laplace transformation is presented. The existence of representing exponential systems in the space $\mathcal H_i(D,u)$ is proved.
Keywords: analytic functions, integer functions, series of exponentials, sufficient sets.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00095_a
This work was supported by the Russian Foundation for Basic Research (project No. 18-01-00095-a).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 3, Pages 302–318
DOI: https://doi.org/10.1007/s10958-020-05162-9
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 30B50, 42A38, 46E10
Language: Russian
Citation: R. A. Bashmakov, K. P. Isaev, R. S. Yulmukhametov, “Representing Systems of Exponentials in Weight Subspaces $H(D)$”, Complex analysis, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 153, VINITI, Moscow, 2018, 13–28; J. Math. Sci. (N. Y.), 252:3 (2021), 302–318
Citation in format AMSBIB
\Bibitem{BasIsaYul18}
\by R.~A.~Bashmakov, K.~P.~Isaev, R.~S.~Yulmukhametov
\paper Representing Systems of Exponentials in Weight Subspaces $H(D)$
\inbook Complex analysis
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 153
\pages 13--28
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into361}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903389}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 3
\pages 302--318
\crossref{https://doi.org/10.1007/s10958-020-05162-9}
Linking options:
  • https://www.mathnet.ru/eng/into361
  • https://www.mathnet.ru/eng/into/v153/p13
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :52
    References:34
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024