Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 143–158 (Mi into358)  

Symmetry-Based Approach to the Problem of a Perfect Cuboid

R. A. Sharipov

Bashkir State University, Ufa
References:
Abstract: A perfect cuboid is a rectangular parallelepiped in which the lengths of all edges, the lengths of all face diagonals, and also the lengths of spatial diagonals are integers. No such cuboid has yet been found, but their nonexistence have also not been proved. The problem of a perfect cuboid is among the unsolved mathematical problems. The problem has a natural $S_3$-symmetry connected to the permutations of edges of the cuboid and the corresponding permutations of face diagonals. In this paper, we give a survey of author's results and results of J. R. Ramsden on using the $S_3$ symmetry for the reduction and analysis of the Diophantine equations for a perfect cuboid.
Keywords: polynomial, Diophantine equation, perfect cuboid.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 2, Pages 266–282
DOI: https://doi.org/10.1007/s10958-020-05159-4
Bibliographic databases:
Document Type: Article
UDC: 511.528
MSC: 11D09, 11D41, 11D72
Language: Russian
Citation: R. A. Sharipov, “Symmetry-Based Approach to the Problem of a Perfect Cuboid”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 143–158; J. Math. Sci. (N. Y.), 252:2 (2021), 266–282
Citation in format AMSBIB
\Bibitem{Sha18}
\by R.~A.~Sharipov
\paper Symmetry-Based Approach to the Problem of a Perfect Cuboid
\inbook Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 152
\pages 143--158
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into358}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903385}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 2
\pages 266--282
\crossref{https://doi.org/10.1007/s10958-020-05159-4}
Linking options:
  • https://www.mathnet.ru/eng/into358
  • https://www.mathnet.ru/eng/into/v152/p143
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :160
    References:23
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024