Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 125–142 (Mi into357)  

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe

O. Yu. Khachay

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (320 kB) Citations (2)
References:
Abstract: For the second-order nonlinear ordinary differential equation ${u''_{xx}=u^5-tu^3-x}$, we prove the existence and uniqueness of a strictly increasing solution, which satisfies an initial condition and a limit condition at infinity and whose graph lies between the zero equation and the continuous graph of the root of the nondifferential equation ${u^5-tu^3-x=0}$. For this solution, we find an asymptotics, which is uniform on the ray ${t\in(-\infty,-M^t)}$ as $x\to+\infty$; separately, we construct asymptotics on the ray ${s>M^s}$ and on the segment ${0\leq s\leq M^s}$, where ${s=|t|^{-5/2}x}$ is the variable compressed with respect to $x$. Using the method of matching asymptotic expansions, we construct a composite asymptotic expansion of the solution to the Cauchy problem whose initial conditions are found from the theorem on the existence of solutions to the original problem. Finally, we construct a uniform asymptotic expansion under the restriction ${t\leq 0}$ as ${x^2+t^2\to\infty}$.
Keywords: matching asymptotic expansions, nonlinear ordinary differential equation, nonlinear equation of mathematical physics, butterfly catastrophe.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-00222_мол_а
This work was partially supported by the Russian Foundation for Basic Research (project No. 16-31-00222).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 2, Pages 247–265
DOI: https://doi.org/10.1007/s10958-020-05158-5
Bibliographic databases:
Document Type: Article
UDC: 517.928.4
Language: Russian
Citation: O. Yu. Khachay, “Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 125–142; J. Math. Sci. (N. Y.), 252:2 (2021), 247–265
Citation in format AMSBIB
\Bibitem{Kha18}
\by O.~Yu.~Khachay
\paper Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe
\inbook Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 152
\pages 125--142
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903384}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 2
\pages 247--265
\crossref{https://doi.org/10.1007/s10958-020-05158-5}
Linking options:
  • https://www.mathnet.ru/eng/into357
  • https://www.mathnet.ru/eng/into/v152/p125
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :37
    References:14
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024