Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 91–102 (Mi into353)  

This article is cited in 2 scientific papers (total in 2 papers)

Generalized Jacobian Matrices and Spectral Analysis of Differential Operators with Polynomial Coefficients

K. A. Mirzoeva, N. N. Konechnajab, T. A. Safonovab, R. N. Tagirovab

a Lomonosov Moscow State University
b Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk
Full-text PDF (221 kB) Citations (2)
References:
Abstract: This paper is devoted to the matrix representation of ordinary symmetric differential operators with polynomial coefficients on the whole axis. We prove that in this case, generalized Jacobian matrices appear. We examine the problem of defect indexes for ordinary differential operators and generalized Jacobian matrices corresponding to them in the spaces $\mathcal{L}^2(-\infty,+\infty)$ and $l^2$, respectively, and analyze the spectra of self-adjoint extensions of these operators (if they exist). This method allows one to detect new classes of entire differential operators of minimal type (in the sense of M. G. Krein) with certain defect numbers. In this case, the defect numbers of these operators can be not only less or equal, but also greater than the order of the corresponding differential expressions. In particular, we construct examples of entire differential operators of minimal type that are generated by irregular differential expressions.
Keywords: regular and irregular differential expression, differential operator, generalized Jacobian matrices, defect index, integer operators of minimal type.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 2, Pages 213–224
DOI: https://doi.org/10.1007/s10958-020-05154-9
Bibliographic databases:
Document Type: Article
UDC: 517.984, 517.929
MSC: 47E05, 39A10
Language: Russian
Citation: K. A. Mirzoev, N. N. Konechnaja, T. A. Safonova, R. N. Tagirova, “Generalized Jacobian Matrices and Spectral Analysis of Differential Operators with Polynomial Coefficients”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 91–102; J. Math. Sci. (N. Y.), 252:2 (2021), 213–224
Citation in format AMSBIB
\Bibitem{MirKonSaf18}
\by K.~A.~Mirzoev, N.~N.~Konechnaja, T.~A.~Safonova, R.~N.~Tagirova
\paper Generalized Jacobian Matrices and Spectral Analysis of Differential Operators with Polynomial Coefficients
\inbook Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 152
\pages 91--102
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903380}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 2
\pages 213--224
\crossref{https://doi.org/10.1007/s10958-020-05154-9}
Linking options:
  • https://www.mathnet.ru/eng/into353
  • https://www.mathnet.ru/eng/into/v152/p91
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :76
    References:31
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024