Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 53–66 (Mi into351)  

This article is cited in 1 scientific paper (total in 1 paper)

Emergence and Decay of $\pi$-Kinks in the Sine-Gordon Model with High-Frequency Pumping

O. M. Kiselev, V. Yu. Novokshenov

Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
Full-text PDF (871 kB) Citations (1)
References:
Abstract: In this paper, we consider the sine-Gordon equation with a high-frequency parametrical pumping and a weak dissipative force. We examine the class of $\pi$-kink-type solutions that are soliton solutions of the nonperturbed sine-Gordon equation. In contrast to stable $2\pi$-kinks, these these solutions are unstable. We prove that the time of decaying of $\pi$-kinks due to small perturbations is proportional to the cube of the inverse period of fast oscillations of the parametrical pumping. We derive a two-time asymptotic expansion of a solution of the boundary-value problem and analyze evolution of a wave packet whose leading term has the form of a $\pi$-kink. Numerical simulations of solutions confirm a good qualitative agreement with asymptotic expansions.
Keywords: sine-Gordon equation, $\pi$-kink, Kapitsa pendulum, averaging method, asymptotic expansion, stability of solitons.
Funding agency Grant number
Russian Science Foundation 17-11-01004
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0022-2018-0013
This work was supported by the Russian Foundation for Basic Research (project No. 16-01-00024, Secs. 3 and 4) and the Government assignment of the Federal Agency for Scientific Organizations (project No. 0022-2018-0013, Sections 1 and 2).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 2, Pages 175–189
DOI: https://doi.org/10.1007/s10958-020-05152-x
Bibliographic databases:
Document Type: Article
UDC: 517.928, 517.937, 517.958
MSC: 31A05, 30D15, 31A15
Language: Russian
Citation: O. M. Kiselev, V. Yu. Novokshenov, “Emergence and Decay of $\pi$-Kinks in the Sine-Gordon Model with High-Frequency Pumping”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 53–66; J. Math. Sci. (N. Y.), 252:2 (2021), 175–189
Citation in format AMSBIB
\Bibitem{KisNov18}
\by O.~M.~Kiselev, V.~Yu.~Novokshenov
\paper Emergence and Decay of $\pi$-Kinks in the Sine-Gordon Model with High-Frequency Pumping
\inbook Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 152
\pages 53--66
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903378}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 2
\pages 175--189
\crossref{https://doi.org/10.1007/s10958-020-05152-x}
Linking options:
  • https://www.mathnet.ru/eng/into351
  • https://www.mathnet.ru/eng/into/v152/p53
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024