|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 46–52
(Mi into350)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On a Certain Class of Hyperbolic Equations with Second-order Integrals
A. V. Zhibera, A. M. Yur'evab a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
b Bashkir State University, Ufa
Abstract:
In this paper, we examine a special class of nonlinear hyperbolic equations possessing a second-order $y$-integral. We clarify the structure of $x$-integrals and prove that they are $x$-integrals of a hyperbolic equation with a first-order $y$-integral. We also prove that this class contains the well-known Laine equation.
Keywords:
Liouville-type equations, differential substitutions, $x$- and $y$-integrals.
Citation:
A. V. Zhiber, A. M. Yur'eva, “On a Certain Class of Hyperbolic Equations with Second-order Integrals”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 46–52; J. Math. Sci. (N. Y.), 252:2 (2021), 168–174
Linking options:
https://www.mathnet.ru/eng/into350 https://www.mathnet.ru/eng/into/v152/p46
|
Statistics & downloads: |
Abstract page: | 178 | Full-text PDF : | 64 | References: | 16 | First page: | 7 |
|