Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 34–45 (Mi into349)  

Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian

V. F. Vil'danovaa, F. Kh. Mukminovb

a Bashkir State Pedagogical University, Ufa
b Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
References:
Abstract: We consider an aggregation elliptic-parabolic equation of the form
\begin{equation*} b(u)_t=\operatorname{div}\Big( |\nabla u|^{p(x)-2}\nabla u-b(u)G(u)\Big)+\gamma(x,b(u)), \end{equation*}
where $b$ is a nondecreasing function and $G(u)$ is an integral operator. The condition on the boundary of a bounded domain $\Omega$ ensures that the mass of the population $\int u(x,t)dx=\operatorname{const}$ is preserved for $\gamma=0$. The existence of a weak solution of the problem with a nonnegative bounded initial function in the cylinder $\Omega\times(0,T)$ is proved. A formula for the guaranteed time $T$ for the existence of the solution is obtained.
Keywords: aggregation equation, $p(\cdot)$-Laplacian, existence of solution.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00428_а
This work was partially supported by the Russian Foundation for Basic Research (project No. 18-01-00428-A).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 2, Pages 156–167
DOI: https://doi.org/10.1007/s10958-020-05150-z
Bibliographic databases:
Document Type: Article
UDC: 517.956.45, 517.968.74
MSC: 35K20, 35K55, 35K65
Language: Russian
Citation: V. F. Vil'danova, F. Kh. Mukminov, “Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 34–45; J. Math. Sci. (N. Y.), 252:2 (2021), 156–167
Citation in format AMSBIB
\Bibitem{VilMuk18}
\by V.~F.~Vil'danova, F.~Kh.~Mukminov
\paper Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian
\inbook Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 152
\pages 34--45
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into349}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903376}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 2
\pages 156--167
\crossref{https://doi.org/10.1007/s10958-020-05150-z}
Linking options:
  • https://www.mathnet.ru/eng/into349
  • https://www.mathnet.ru/eng/into/v152/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :48
    References:25
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024