|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 34–45
(Mi into349)
|
|
|
|
Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian
V. F. Vil'danovaa, F. Kh. Mukminovb a Bashkir State Pedagogical University, Ufa
b Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
Abstract:
We consider an aggregation elliptic-parabolic equation of the form
\begin{equation*}
b(u)_t=\operatorname{div}\Big( |\nabla u|^{p(x)-2}\nabla u-b(u)G(u)\Big)+\gamma(x,b(u)),
\end{equation*}
where $b$ is a nondecreasing function and $G(u)$ is an integral operator. The condition on the boundary of a bounded domain $\Omega$ ensures that the mass of the population $\int u(x,t)dx=\operatorname{const}$ is preserved for $\gamma=0$. The existence of a weak solution of the problem with a nonnegative bounded initial function in the cylinder $\Omega\times(0,T)$ is proved. A formula for the guaranteed time $T$ for the existence of the solution is obtained.
Keywords:
aggregation equation, $p(\cdot)$-Laplacian, existence of solution.
Citation:
V. F. Vil'danova, F. Kh. Mukminov, “Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 34–45; J. Math. Sci. (N. Y.), 252:2 (2021), 156–167
Linking options:
https://www.mathnet.ru/eng/into349 https://www.mathnet.ru/eng/into/v152/p34
|
Statistics & downloads: |
Abstract page: | 252 | Full-text PDF : | 48 | References: | 25 | First page: | 6 |
|