Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 13–24 (Mi into347)  

Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf

D. I. Borisovabc

a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
b Bashkir State Pedagogical University, Ufa
c University of Hradec Králové
References:
Abstract: In this paper, we consider the operator sheaf $-\Delta+V+\varepsilon\mathcal{L}_\varepsilon(\lambda)+\lambda^2$ in the space $L_2(\mathbb{R}^2)$, where the real-valued potential $V$ depends only on the first variable $x_1$, $\varepsilon$ is a small positive parameter, $\lambda$ is the spectral parameter, $\mathcal{L}_\varepsilon(\lambda)$ is a localized operator bounded with respect to the Laplacian $-\Delta$, and the essential spectrum of this operator is independent of $\varepsilon$ and contains certain critical points defined as isolated eigenvalues of the operator $-\dfrac{d^2}{dx_1^2}+V(x_1)$ in $L_2(\mathbb{R})$. The basic result obtained in this paper states that for small values of $\varepsilon$, in neighborhoods of critical points mentioned, isolated eigenvalues of the sheaf considered arise. Sufficient conditions for the existence or absence of such eigenvalues are obtained. The number of arising eigenvalues is determined, and in the case where they exist, the first terms of their asymptotic expansions are found.
Keywords: operator sheaf, perturbation, spectrum, eigenvalue, critical point.
Funding agency Grant number
Russian Science Foundation 17-11-01004
This work was partially supported by the Russian Science Foundation (project No. 17-11-01004).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 2, Pages 135–146
DOI: https://doi.org/10.1007/s10958-020-05148-7
Bibliographic databases:
Document Type: Article
UDC: 517.958, 517.984, 519.21
MSC: 47F05, 35P05
Language: Russian
Citation: D. I. Borisov, “Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 13–24; J. Math. Sci. (N. Y.), 252:2 (2021), 135–146
Citation in format AMSBIB
\Bibitem{Bor18}
\by D.~I.~Borisov
\paper Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
\inbook Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 152
\pages 13--24
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into347}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903374}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 2
\pages 135--146
\crossref{https://doi.org/10.1007/s10958-020-05148-7}
Linking options:
  • https://www.mathnet.ru/eng/into347
  • https://www.mathnet.ru/eng/into/v152/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024