Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 152, Pages 3–12 (Mi into346)  

Eigenfunctions of Ordinary Differential Euler Operators

Yu. Yu. Bagderina

Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
References:
Abstract: Asymptotic solutions of the eigenvalue problem for an Euler operator in a neighborhood of a regular singular point are considered. We find a condition under which the asymptotic expansion is free of logarithms. Eigenvalues expressed in terms of elementary functions in the form of a finite sum of quasi-polynomials are obtained for third-order Euler operators and also for commuting Euler operators of sixth and ninth orders. The problem on common eigenfunctions for commuting Euler operators is examined. In the case of operators of rank $2$ and $3$, it can be reduced to second- and third-order Bessel equations by differential substitutions.
Keywords: eigenfunction, Euler operator, Fuchsian singularity.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 2, Pages 125–134
DOI: https://doi.org/10.1007/s10958-020-05147-8
Bibliographic databases:
Document Type: Article
UDC: 517.927, 517.923
MSC: 47E05, 34L10, 34B30
Language: Russian
Citation: Yu. Yu. Bagderina, “Eigenfunctions of Ordinary Differential Euler Operators”, Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 152, VINITI, Moscow, 2018, 3–12; J. Math. Sci. (N. Y.), 252:2 (2021), 125–134
Citation in format AMSBIB
\Bibitem{Bag18}
\by Yu.~Yu.~Bagderina
\paper Eigenfunctions of Ordinary Differential Euler Operators
\inbook Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 152
\pages 3--12
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903373}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 2
\pages 125--134
\crossref{https://doi.org/10.1007/s10958-020-05147-8}
Linking options:
  • https://www.mathnet.ru/eng/into346
  • https://www.mathnet.ru/eng/into/v152/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024