Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 151, Pages 73–90 (Mi into342)  

This article is cited in 1 scientific paper (total in 1 paper)

Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space

V. Zh. Sakbaev

Moscow Institute of Physics and Technology (State University)
Full-text PDF (295 kB) Citations (1)
References:
Abstract: We examine measures on a Banach space $E$ that are invariant under shifts by arbitrary vectors of the space and are additive extensions of a set function defined on the family of bars with converging products of edge lengths that do not satisfy the $\sigma$-finiteness condition and, perhaps, the countable additivity condition. We introduce the Hilbert space $\mathcal{H}$ of complex-valued functions of the space $E$ of functions that are square integrable with respect to a shift-invariant measure. We analyze properties of semigroups of shift operators in the space $\mathcal{H}$ and the corresponding generators and resolvents. We obtain a criterion of the strong continuity of such semigroups. We introduce and examine mathematical expectations of operators of shifts along random vectors by a one-parameter family of Gaussian measures that form a semigroup with respect to the convolution. We prove that the family of mathematical expectations is a one-parameter semigroup of linear self-adjoint contraction mappings of the space $\mathcal{H}$, find invariant subspaces of operators of this semigroup, and obtain conditions of its strong continuity.
Keywords: finitely additive measure, invariant measure on a group, random walk, continuous one-parameter semigroup, generator, resolvent.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 252, Issue 1, Pages 72–89
DOI: https://doi.org/10.1007/s10958-020-05143-y
Bibliographic databases:
Document Type: Article
UDC: 517.982, 517.983
MSC: 28C20, 81Q05, 47D08
Language: Russian
Citation: V. Zh. Sakbaev, “Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space”, Quantum probability, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 151, VINITI, Moscow, 2018, 73–90; J. Math. Sci. (N. Y.), 252:1 (2021), 72–89
Citation in format AMSBIB
\Bibitem{Sak18}
\by V.~Zh.~Sakbaev
\paper Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space
\inbook Quantum probability
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 151
\pages 73--90
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into342}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314137}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 1
\pages 72--89
\crossref{https://doi.org/10.1007/s10958-020-05143-y}
Linking options:
  • https://www.mathnet.ru/eng/into342
  • https://www.mathnet.ru/eng/into/v151/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025